Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancer Gene Ther ; 29(2): 178-188, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33558701

RESUMO

Necrosis is a typical histological feature of solid tumours that provides a selective environment for growth of the non-pathogenic anaerobic bacterium Clostridium sporogenes. Modest anti-tumour activity as a single agent encouraged the use of C. sporogenes as a vector to express therapeutic genes selectively in tumour tissue, a concept termed Clostridium Directed Enzyme Prodrug Therapy (CDEPT). Here, we examine the ability of a recently identified Neisseria meningitidis type I nitroreductase (NmeNTR) to metabolise the prodrug PR-104A in an in vivo model of CDEPT. Human HCT116 colon cancer cells stably over-expressing NmeNTR demonstrated significant sensitivity to PR-104A, the imaging agent EF5, and several nitro(hetero)cyclic anti-infective compounds. Chemical induction of necrosis in human H1299 xenografts by the vascular disrupting agent vadimezan promoted colonisation by NmeNTR-expressing C. sporogenes, and efficacy studies demonstrated moderate but significant anti-tumour activity of spores when compared to untreated controls. Inclusion of the pre-prodrug PR-104 into the treatment schedule provided significant additional activity, indicating proof-of-principle. Successful preclinical evaluation of a transferable gene that enables metabolism of both PET imaging agents (for vector visualisation) and prodrugs (for conditional enhancement of efficacy) is an important step towards the prospect of CDEPT entering clinical evaluation.


Assuntos
Pró-Fármacos , Composição de Bases , Clostridium/genética , Clostridium/metabolismo , Humanos , Filogenia , Pró-Fármacos/farmacologia , Pró-Fármacos/uso terapêutico , RNA Ribossômico 16S , Análise de Sequência de DNA
2.
MethodsX ; 7: 100797, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32021829

RESUMO

Bacterial-directed enzyme-prodrug therapy (BDEPT) uses tumour-tropic bacteria armed with a genetically-encoded prodrug-converting enzyme to sensitise tumours to a systemically-administered prodrug. A strong bystander effect (i.e., efficient bacteria-to-tumour transfer of activated prodrug metabolites) is critical to maximise tumour cell killing and avoid bacterial self-sterilisation. To investigate the bystander effect in bacteria we developed a sensitive screen that utilised two Escherichia coli strains grown in co-culture. The first of these was an activator strain that overexpressed the E. coli nitroreductase NfsA, and the second was a nitroreductase null recipient strain bearing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by genotoxic prodrug metabolites can only occur following their transfer from the activator to the recipient cells. This can be monitored both in fluorescence based microtitre plate assays and by flow-cytometry, enabling modelling of the abilities of diverse nitroaromatic prodrug metabolites to exit a Gram negative vector.

3.
Biochem Pharmacol ; 158: 192-200, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30352235

RESUMO

Gene-directed enzyme-prodrug therapy (GDEPT) employs tumour-tropic vectors including viruses and bacteria to deliver a genetically-encoded prodrug-converting enzyme to the tumour environment, thereby sensitising the tumour to the prodrug. Nitroreductases, able to activate a range of promising nitroaromatic prodrugs to genotoxic metabolites, are of great interest for GDEPT. The bystander effect (cell-to-cell transfer of activated prodrug metabolites) has been quantified for some nitroaromatic prodrugs in mixed multilayer human cell cultures, however while these provide a good model for viral DEPT (VDEPT) they do not inform on the ability of these prodrug metabolites to exit bacterial vectors (relevant to bacterial-DEPT (BDEPT)). To investigate this we grew two Escherichia coli strains in co-culture; an activator strain expressing the nitroreductase E. coli NfsA and a recipient strain containing an SOS-GFP DNA damage responsive gene construct. In this system, induction of GFP by reduced prodrug metabolites can only occur following their transfer from the activator to the recipient cells. We used this to investigate five clinically relevant prodrugs: metronidazole, CB1954, nitro-CBI-DEI, and two dinitrobenzamide mustard prodrug analogues, PR-104A and SN27686. Consistent with the bystander efficiencies previously measured in human cell multilayers, reduced metronidazole exhibited little bacterial cell-to-cell transfer, whereas nitro-CBI-DEI was passed very efficiently from activator to recipient cells post-reduction. However, in contrast with observations in human cell multilayers, the nitrogen mustard prodrug metabolites were not effectively passed between the two bacterial strains, whereas reduced CB1954 was transferred efficiently. Using nitroreductase enzymes that exhibit different biases for the 2- versus 4-nitro substituents of CB1954, we further showed that the 2-nitro reduction products exhibit substantially higher levels of bacterial cell-to-cell transfer than the 4-nitro reduction products, consistent with their relative bystander efficiencies in human cell culture. Overall, our data suggest that prodrugs may differ in their suitability for VDEPT versus BDEPT applications and emphasise the importance of evaluating an enzyme-prodrug partnership in an appropriate context for the intended vector.


Assuntos
Escherichia coli/metabolismo , Terapia Genética/métodos , Vetores Genéticos/metabolismo , Nitrorredutases/metabolismo , Pró-Fármacos/metabolismo , Aziridinas/metabolismo , Aziridinas/farmacologia , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos/métodos , Escherichia coli/efeitos dos fármacos , Vetores Genéticos/farmacologia , Humanos , Pró-Fármacos/farmacologia
4.
Biochem J ; 471(2): 131-53, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26431849

RESUMO

This review examines the vast catalytic and therapeutic potential offered by type I (i.e. oxygen-insensitive) nitroreductase enzymes in partnership with nitroaromatic prodrugs, with particular focus on gene-directed enzyme prodrug therapy (GDEPT; a form of cancer gene therapy). Important first indications of this potential were demonstrated over 20 years ago, for the enzyme-prodrug pairing of Escherichia coli NfsB and CB1954 [5-(aziridin-1-yl)-2,4-dinitrobenzamide]. However, it has become apparent that both the enzyme and the prodrug in this prototypical pairing have limitations that have impeded their clinical progression. Recently, substantial advances have been made in the biodiscovery and engineering of superior nitroreductase variants, in particular development of elegant high-throughput screening capabilities to enable optimization of desirable activities via directed evolution. These advances in enzymology have been paralleled by advances in medicinal chemistry, leading to the development of second- and third-generation nitroaromatic prodrugs that offer substantial advantages over CB1954 for nitroreductase GDEPT, including greater dose-potency and enhanced ability of the activated metabolite(s) to exhibit a local bystander effect. In addition to forging substantial progress towards future clinical trials, this research is supporting other fields, most notably the development and improvement of targeted cellular ablation capabilities in small animal models, such as zebrafish, to enable cell-specific physiology or regeneration studies.


Assuntos
Aziridinas/uso terapêutico , Proteínas de Escherichia coli , Terapia Genética/métodos , Neoplasias Experimentais/terapia , Nitrorredutases , Pró-Fármacos/uso terapêutico , Animais , Evolução Molecular Direcionada , Proteínas de Escherichia coli/biossíntese , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/uso terapêutico , Humanos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Nitrorredutases/biossíntese , Nitrorredutases/genética , Nitrorredutases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...